Structure Reports

Online
ISSN 1600-5368

catena-Poly[[[tetraaqualanthanum(III)]-di- μ-isonicotinato- $\left.\kappa^{4} O: O^{\prime}\right]$ chloride]

Jin-He Zhao

Department of Chemical and Life Science, Baise University, Baise 533000, People's Republic of China
Correspondence e-mail: ben19812006@163.com

Received 21 March 2012; accepted 19 June 2012

Key indicators: single-crystal X-ray study; $T=296 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$; R factor $=0.025 ; w R$ factor $=0.058$; data-to-parameter ratio $=15.0$.

In the title compound, $\left\{\left[\mathrm{La}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \mathrm{Cl}\right\}_{n}$, the $\mathrm{La}^{\text {III }}$ atom lies on a twofold rotation axis and is eight-coordinated by four O atoms from four isonicotinate ligands and four water molecules in a distorted square-antiprismatic coodination environment. Adjacent $\mathrm{La}^{\text {III }}$ atoms are bridged by two carboxylate groups from two isonicotinate ligands, forming an extended chain along [001]. These chains are linked through $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds into a three-dimensional network with channels in which the chloride anions form $\mathrm{O}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds. Intrachain $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds and $\pi-\pi$ interactions [centroid-centroid distance $=3.908(2) \AA$ A are also observed.

Related literature

For lanthanide complexes with nicotinic acid, isonicotinic acid and isonicotinic acid N-oxide ligands, see: Cai et al. (2003); Chen \& Fukuzumi (2009); Cui et al. (1999); Kay et al. (1972); Ma et al. (1996, 1999); Mao et al. (1998); Starynowicz (1991, 1993); Wu et al. (2008); Zeng et al. (2000); Zhang et al. (1999).

Experimental

Crystal data
$\left[\mathrm{La}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \mathrm{Cl}$
Orthorhombic, Pbcn
$M_{r}=490.63$

$$
\begin{aligned}
& b=19.769(3) \AA \\
& c=10.305(3) \AA \AA^{3} \\
& V=1830.8(9) \AA^{3} \\
& Z=4
\end{aligned}
$$

Mo $K \alpha$ radiation

Z
$T=296 \mathrm{~K}$
$0.36 \times 0.34 \times 0.32 \mathrm{~mm}$

Data collection
Bruker SMART 1000 CCD diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\text {min }}=0.464, T_{\max }=0.500$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.025$
$w R\left(F^{2}\right)=0.058$
$S=1.07$
1652 reflections

9336 measured reflections
1652 independent reflections
1442 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.029$

Table 1
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots \mathrm{A}$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 3-\mathrm{H} 3 A \cdots \mathrm{~N}{ }^{1}$	0.85	1.85	2.699 (4)	175
$\mathrm{O} 3-\mathrm{H} 3 \mathrm{~B} \cdots \mathrm{Cl}^{\text {ii }}$	0.85	2.36	3.212 (2)	175
$\mathrm{O} 4-\mathrm{H} 4 \mathrm{C} \cdots \mathrm{O}^{\text {iii }}$	0.85	2.01	2.860 (3)	180
O4-H4D \cdots Cl 1	0.85	2.17	3.024 (3)	180

Symmetry codes: (i) $x+\frac{1}{2}, y+\frac{1}{2},-z+\frac{1}{2}$; (ii) $x+1, y, z$; (iii) $-x+2,-y+2,-z+1$.
Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2530).

References

Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Cai, L.-Z., Wang, M.-S., Zhou, G.-W., Guo, G.-C., Mao, J.-G. \& Huang, J.-S. (2003). Acta Cryst. E59, m249-m251.

Chen, W.-T. \& Fukuzumi, S. (2009). Inorg. Chem. 48, 3800-3807.
Cui, Y., Zheng, F.-K. \& Huang, J.-S. (1999). Chem. Lett. pp. 281-282.
Kay, J., Moore, J. W. \& Glick, M. D. (1972). Inorg. Chem. 11, 2818-2827.
Ma, L., Evans, O. R., Foxman, B. M. \& Lin, W. B. (1999). Inorg. Chem. 38, 5837-5840.
Ma, J.-F., Hu, N.-H. \& Ni, J.-Z. (1996). Polyhedron, 15, 1797-1799.
Mao, J.-G., Zhang, H.-J., Ni, J.-Z., Wang, S.-B. \& Mak, T. C. W. (1998). J. Chem. Crystallogr. 17, 3999-4009.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Starynowicz, P. (1991). Acta Cryst. C47, 294-297.
Starynowicz, P. (1993). Acta Cryst. C49, 1895-1897.
Wu, K.-J., Cai, L.-Z., Xu, G., Zhou, G.-W. \& Guo, G.-C. (2008). Acta Cryst. E64, m56.
Zeng, X.-R., Xu, Y., Xiong, R.-G., Zhang, L.-J. \& You, X.-Z. (2000). Acta Cryst. C56, e325-e326.
Zhang, X., Cui, Y., Zheng, F.-K. \& Huang, J.-S. (1999). Chem. Lett. pp. 11111112.

supplementary materials

Acta Cryst. (2012). E68, m972 [doi:10.1107/S1600536812027778]

catena-Poly[[[tetraaqualanthanum(III)]-di- μ-isonicotinato- $\left.\kappa^{4} O: O^{\prime}\right]$ chloride]

Jin-He Zhao

Comment

Much attention has been devoted to the research on lanthanide metal polynuclear compounds because of their magnetic and luminescent properties. Most of these types of compounds were synthesized by the reaction of rare-earth metal ions with bi- or multi-dentate ligands such as nicotinic acid (Kay et al., 1972; Ma, Hu et al., 1996; Starynowicz, 1991, 1993), isonicotinic acid (Chen \& Fukuzumi, 2009; Ma, Evans et al., 1999; Wu et al., 2008; Zeng et al., 2000) and isonicotinic acid N-oxide (Mao et al., 1998). In the course of research in this area, our extended group has reported several such compounds with different bridging ligands (Cai et al., 2003; Cui et al., 1999; Zhang et al., 1999). Herein, we report the synthesis and crystal structure of a new lanthanum complex with isonicotinic ligand.
The title compound contains extended $\left[\mathrm{La}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]_{n}$ cationic chains and Cl^{-}anions. The $\mathrm{La}^{\text {III }}$ ion, lying on a twofold rotation axis, is eight-coordinated by four O atoms belonging to four different isonicotinic ligands [average La $\mathrm{O}=2.451$ (3) \AA] and four water molecules [average $\mathrm{La}-\mathrm{O}=2.563$ (3) \AA] (Fig. 1). The coordination geometry of the $\mathrm{La}^{\text {III }}$ ion is best described as slightly distorted square-antiprismatic. The La atoms are bridged each other by two syn-syn $\mu-O: O^{\prime}$-carboxylate groups of the isonicotinic ligands, forming an extended chain along [0001$]$. This geometry is similar to that found in $\left.\left[\mathrm{Eu}(L)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]\right]_{\mathrm{n}} \cdot \mathrm{nH}_{2} \mathrm{O}\left(L=\right.$ isonicotinic acid N -oxide) (Mao et al., 1998) and $\left[\mathrm{La}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]\left(\mathrm{NO}_{3}\right)$ (Cai et al., 2003), but differs from those found in $\mathrm{Ln}(\text { isonicotinate })_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(\mathrm{Ln}=\mathrm{Ce}, \mathrm{Pr}, \mathrm{Nd}, \mathrm{Sm}, \mathrm{Eu}, \mathrm{Tb})(\mathrm{Ma}$, Evans et al., 1999), in which the $\mathrm{Ln}^{\text {III }}$ atoms are bridged by four syn-syn $\mu-O: O^{\prime}$-carboxylate groups of the isonicotinic ligands (Ln $=\mathrm{Ce}, \mathrm{Pr}, \mathrm{Nd}$) or coordinated by both two syn-syn $\mu-O: O^{\prime}$-carboxylate groups and chelating carboxylate groups of the isonicotinic ligands ($\mathrm{Ln}=\mathrm{Sm}, \mathrm{Eu}, \mathrm{Tb}$). To the best of our knowledge, the arrangement in the present complex is rare in the lanthanide analogs.
There are three kinds of hydrogen bonds, $\mathrm{O}-\mathrm{H} \cdots \mathrm{Cl}, \mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ (Table 1). Interchain $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds between the coordinated water molecules and uncoordinated N atoms of the isonicotinate ligands link the cationic chains into a three-dimensional network with channels along [0001$]$, in which the chloride anions are located, as shown in Fig. 2, forming $\mathrm{O}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds. Intrachain $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds are also present. $\pi-\pi$ stacking interactions exist between two adjacent isonicotinate ligands located in a same chain [centroid-centroid distance $=$ 3.908 (2) Å].

Experimental

$\mathrm{LaCl}_{3} .7 \mathrm{H}_{2} \mathrm{O}(0.3174 \mathrm{~g}, 1 \mathrm{mmol})$, isonicotinic acid ($\left.0.2442 \mathrm{~g}, 2 \mathrm{mmol}\right)$, $\mathrm{NaOH}(0.08 \mathrm{~g}, 2 \mathrm{mmol})$ were added to a mixture of water $(15 \mathrm{ml})$ and ethanol $(10 \mathrm{ml})$. The resulting mixture was stirred at 423 K for 4 h and filtered off. The filtrate was allowed to stand at room temperature and slow evaporation afforded colorless block crystals of the title complex (yield: 65%). Analysis, calculated for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{ClLaN}_{2} \mathrm{O}_{8}$: C 29.38 , N 5.71 , H 3.29\%; found: C $29.36, \mathrm{~N} 5.74, \mathrm{H} 3.28 \%$.

Refinement

H atoms on C atoms were positioned geometrically and refined as riding atoms, with $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}(\mathrm{C})$. The water H atoms were located in difference Fourier maps and refined using a riding model, with $\mathrm{O}-\mathrm{H}=$ $0.85 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{O})$.

Computing details

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figure 1
Part of the one-dimensional cationic chain of the title compound (Cl anions are not shown). Displacement ellipsoids are shown at the 30% probability level. [Symmetry codes: (i) $2-x, y, 1 / 2-z$; (ii) $2-x, 2-y,-z$; (iii) $x, 2-y, 1 / 2+z$.]

Figure 2
Packing diagram of the title compound. Yellow dashed lines represent $\pi-\pi$ interactions and green dashed lines represent hydrogen bonds.

catena-Poly[[[tetraaqualanthanum(III)]-di- μ-isonicotinato- $\left.\boldsymbol{\kappa}^{4} O: O^{\prime}\right]$ chloride]

Crystal data

$\left[\mathrm{La}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \mathrm{Cl}$
$M_{r}=490.63$
Orthorhombic, Pbcn
Hall symbol: -P 2n 2ab
$a=8.987$ (3) \AA
$b=19.769$ (3) \AA
$c=10.305$ (3) \AA
$V=1830.8(9) \AA^{3}$
$Z=4$

Data collection

Bruker SMART 1000 CCD
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\min }=0.464, T_{\text {max }}=0.500$
$F(000)=960$
$D_{\mathrm{x}}=1.780 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 3778 reflections
$\theta=2.5-28.3^{\circ}$
$\mu=2.52 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
Block, colorless
$0.36 \times 0.34 \times 0.32 \mathrm{~mm}$

9336 measured reflections
1652 independent reflections
1442 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.029$
$\theta_{\text {max }}=25.2^{\circ}, \theta_{\text {min }}=2.1^{\circ}$
$h=-10 \rightarrow 10$
$k=-13 \rightarrow 23$
$l=-12 \rightarrow 11$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.025$
$w R\left(F^{2}\right)=0.058$
$S=1.07$
1652 reflections
110 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

> Secondary atom site location: difference Fourier map
> Hydrogen site location: inferred from
> neighbouring sites
> H -atom parameters constrained
> $w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0232 P)^{2}+2.6828 P\right]$
> where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
> $(\Delta / \sigma)_{\max }=0.001$
> $\Delta \rho_{\max }=0.46$ e \AA^{-3}
> $\Delta \rho_{\min }=-0.83 \mathrm{e}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R -factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>2 \operatorname{sigma}\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F , and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
O2	$0.9557(3)$	$0.89408(12)$	$-0.0984(2)$	$0.0408(6)$
La1	1.0000	$1.011578(11)$	0.2500	$0.02190(10)$
O1	$0.8975(3)$	$0.92871(11)$	$0.1000(2)$	$0.0377(5)$
O3	$1.2552(2)$	$1.04958(10)$	$0.3400(2)$	$0.0352(5)$
H3A	1.2917	1.0890	0.3483	0.042^{*}
H3B	1.3240	1.0228	0.3163	0.042^{*}
C1	$0.8975(3)$	$0.81153(15)$	$0.0573(3)$	$0.0260(6)$
C2	$0.8242(4)$	$0.79557(17)$	$0.1717(3)$	$0.0374(8)$
H2	0.7884	0.8293	0.2262	0.045^{*}
O4	$0.7951(3)$	$0.95919(14)$	$0.3865(2)$	$0.0473(6)$
H4C	0.7803	0.9566	0.4678	0.057^{*}
H4D	0.7123	0.9541	0.3480	0.057^{*}
C3	$0.9497(4)$	$0.75920(16)$	$-0.0183(3)$	$0.0366(8)$
H3	1.0001	0.7681	-0.0952	0.044^{*}
N1	$0.8541(3)$	$0.67750(15)$	$0.1297(3)$	$0.0466(8)$
C5	$0.9265(5)$	$0.69354(18)$	$0.0216(4)$	$0.0500(10)$
H5	0.9633	0.6587	-0.0297	0.060^{*}
C6	$0.8060(5)$	$0.7282(2)$	$0.2023(4)$	$0.0485(9)$
H6	0.7567	0.7176	0.2790	0.058^{*}
C7	$0.9186(3)$	$0.88401(15)$	$0.0168(3)$	$0.0270(7)$
C11	0.5000	$0.94091(8)$	0.2500	$0.0543(4)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	$U^{\beta 3}$	U^{12}	U^{13}	U^{23}
O2	$0.0554(15)$	$0.0312(12)$	$0.0358(13)$	$-0.0011(11)$	$0.0088(11)$	$0.0112(10)$

supplementary materials

La1	$0.02877(15)$	$0.01764(15)$	$0.01929(14)$	0.000	$-0.00134(9)$	0.000
O1	$0.0418(13)$	$0.0273(12)$	$0.0441(13)$	$-0.0027(10)$	$-0.0035(11)$	$-0.0106(10)$
O3	$0.0358(12)$	$0.0247(11)$	$0.0450(12)$	$-0.0076(9)$	$0.0005(10)$	$-0.0071(10)$
C1	$0.0297(16)$	$0.0252(16)$	$0.0232(14)$	$-0.0039(13)$	$-0.0028(12)$	$0.0002(12)$
C2	$0.048(2)$	$0.0331(18)$	$0.0316(17)$	$-0.0037(15)$	$0.0086(15)$	$0.0009(14)$
O4	$0.0318(13)$	$0.0836(19)$	$0.0265(11)$	$-0.0182(12)$	$-0.0036(9)$	$0.0118(12)$
C3	$0.050(2)$	$0.0280(17)$	$0.0322(17)$	$-0.0020(15)$	$0.0090(15)$	$0.0005(14)$
N1	$0.0507(19)$	$0.0318(16)$	$0.057(2)$	$-0.0095(14)$	$0.0008(16)$	$0.0117(15)$
C5	$0.067(3)$	$0.0247(18)$	$0.058(2)$	$-0.0007(19)$	$0.007(2)$	$-0.0048(17)$
C6	$0.053(2)$	$0.047(2)$	$0.045(2)$	$-0.0104(18)$	$0.0123(19)$	$0.0156(18)$
C7	$0.0253(17)$	$0.0245(16)$	$0.0312(16)$	$-0.0026(13)$	$-0.0032(13)$	$0.0012(13)$
C11	$0.0349(7)$	$0.0595(9)$	$0.0687(9)$	0.000	$-0.0172(6)$	0.000

Geometric parameters $\left({ }^{\circ},{ }^{\circ}\right)$

O2-C7	1.249 (4)	C2-C6	1.379 (5)
La1-O1	2.433 (2)	$\mathrm{C} 2-\mathrm{H} 2$	0.9300
$\mathrm{La} 1-\mathrm{O} 2^{\text {i }}$	2.465 (2)	O4-H4C	0.8500
La1-O4	2.538 (2)	O4-H4D	0.8500
La1-O3	2.585 (2)	C3-C5	1.378 (5)
O1-C7	1.246 (4)	C3-H3	0.9300
$\mathrm{O} 3-\mathrm{H} 3 \mathrm{~A}$	0.8500	N1-C6	1.323 (5)
O3-H3B	0.8500	N1-C5	1.328 (5)
C1-C3	1.377 (4)	C5-H5	0.9300
$\mathrm{C} 1-\mathrm{C} 2$	1.387 (4)	C6-H6	0.9300
C1-C7	1.504 (4)		
C7-O2-La1 ${ }^{\text {ii }}$	140.0 (2)	$\mathrm{O} 3-\mathrm{La} 1-\mathrm{O} 3{ }^{\text {iii }}$	146.21 (10)
$\mathrm{O} 1-\mathrm{Lal}-\mathrm{Ol}^{\text {iii }}$	95.35 (11)	C7-O1-La1	149.0 (2)
$\mathrm{O} 1-\mathrm{La} 1-\mathrm{O}^{2}$	148.28 (8)	$\mathrm{La} 1-\mathrm{O} 3-\mathrm{H} 3 \mathrm{~A}$	130.2
$\mathrm{O} 1^{\text {iii- }} \mathrm{La} 1-\mathrm{O} 2^{\text {i }}$	99.69 (8)	La1-O3-H3B	111.2
$\mathrm{O} 1-\mathrm{La} 1-\mathrm{O} 2{ }^{\text {ii }}$	99.69 (8)	$\mathrm{H} 3 \mathrm{~A}-\mathrm{O} 3-\mathrm{H} 3 \mathrm{~B}$	108.5
$\mathrm{O} 1^{\text {iii- }} \mathrm{La} 1-\mathrm{O} 2^{\text {ii }}$	148.28 (8)	C3-C1-C2	118.1 (3)
$\mathrm{O} 2{ }^{\text {i }}-\mathrm{La} 1-\mathrm{O} 2^{\text {ii }}$	81.66 (11)	$\mathrm{C} 3-\mathrm{C} 1-\mathrm{C} 7$	121.0 (3)
$\mathrm{O} 1-\mathrm{La} 1-\mathrm{O} 4$	78.60 (8)	C2- $\mathrm{C} 1-\mathrm{C} 7$	120.8 (3)
$\mathrm{O} 1^{\text {iii- }} \mathrm{La} 1-\mathrm{O} 4$	69.39 (8)	C6-C2-C1	118.1 (3)
$\mathrm{O} 2 \mathrm{i}-\mathrm{La} 1-\mathrm{O} 4$	80.82 (8)	C6-C2-H2	121.0
$\mathrm{O} 2 \mathrm{ii}-\mathrm{La} 1-\mathrm{O} 4$	141.00 (8)	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	121.0
$\mathrm{O} 1-\mathrm{La} 1-\mathrm{O} 4{ }^{\text {iii }}$	69.39 (8)	La1-O4-H4C	133.2
$\mathrm{O} 1^{\text {iii- }} \mathrm{La} 1-\mathrm{O} 4^{\text {iii }}$	78.60 (8)	La1-O4-H4D	115.2
$\mathrm{O} 2 \mathrm{i}-\mathrm{La} 1-\mathrm{O} 4{ }^{\text {iii }}$	141.00 (8)	H4C-O4-H4D	108.4
$\mathrm{O} 2{ }^{\text {iii }} \mathrm{La} 1-\mathrm{O} 4{ }^{\text {iii }}$	80.82 (8)	C1-C3-C5	119.2 (3)
$\mathrm{O} 4-\mathrm{La} 1-\mathrm{O} 4{ }^{\text {iii }}$	131.82 (13)	C1-C3-H3	120.4
$\mathrm{O} 1-\mathrm{La} 1-\mathrm{O} 3$	139.41 (7)	C5-C3-H3	120.4
$\mathrm{O} 1^{\text {iii- }} \mathrm{La} 1-\mathrm{O} 3$	68.40 (7)	C6-N1-C5	117.0 (3)
$\mathrm{O} 2 \mathrm{~L}-\mathrm{La} 1-\mathrm{O} 3$	72.31 (8)	N1-C5-C3	123.4 (3)
$\mathrm{O} 2{ }^{\text {ii }}$-La1-O3	82.19 (8)	N1-C5-H5	118.3
$\mathrm{O} 4-\mathrm{La} 1-\mathrm{O} 3$	124.28 (7)	C3-C5-H5	118.3
O4 $4^{\text {iii- }} \mathrm{La} 1-\mathrm{O} 3$	70.97 (7)	N1-C6-C2	124.3 (3)
O1-La1-O3 ${ }^{\text {iii }}$	68.40 (7)	N1-C6-H6	117.8

supplementary materials

$\mathrm{O} 1^{\text {iii] }}$ - $\mathrm{La} 1-\mathrm{O} 3{ }^{\text {iii }}$	139.41 (7)	C2-C6-H6	117.8
$\mathrm{O} 2^{\text {i }}$ - $\mathrm{La} 1-\mathrm{O} 3^{\text {iii }}$	82.19 (8)	$\mathrm{O} 1-\mathrm{C} 7-\mathrm{O} 2$	125.6 (3)
$\mathrm{O} 2{ }^{\text {iii-La }}$ - ${ }^{\text {O }}{ }^{\text {iii }}$	72.31 (8)	O1-C7- 1	117.7 (3)
O4-La1-O3 ${ }^{\text {iii }}$	70.97 (7)	$\mathrm{O} 2-\mathrm{C} 7-\mathrm{C} 1$	116.7 (3)
$\mathrm{O} 4{ }^{\text {iiil-Lal- }}$ - $3^{\text {iii }}$	124.28 (7)		

Symmetry codes: (i) $x,-y+2, z+1 / 2$; (ii) $-x+2,-y+2,-z$; (iii) $-x+2, y,-z+1 / 2$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 3 — \mathrm{H} 3 A \cdots \mathrm{~N} 1^{\text {iv }}$	0.85	1.85	$2.699(4)$	175
$\mathrm{O}^{2}-\mathrm{H} 3 B \cdots \mathrm{Cl}^{\mathrm{v}}$	0.85	2.36	$3.212(2)$	175
$\mathrm{O}^{\mathrm{H}} \mathrm{H} 4 C \cdots \mathrm{O} 3^{\text {vi }}$	0.85	2.01	$2.860(3)$	180
$\mathrm{O} 4 — \mathrm{H} 4 D \cdots \mathrm{Cl1}$	0.85	2.17	$3.024(3)$	180

Symmetry codes: (iv) $x+1 / 2, y+1 / 2,-z+1 / 2$; (v) $x+1, y, z$; (vi) $-x+2,-y+2,-z+1$.

